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Abstract

A general turbulent constitutive relation (Shih and Lumley, 1993) is directly applied

to propose a new Reynolds stress algebraic equation model. In the development of this

model, the constraints based on rapid distortion theory and realizability (i.e. the positivity

of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity

correlations) are imposed. Model coefficients are calibrated using well-studied basic flows

such as homogenous shear flow and the surface flow in the inertial sublayer. The performance

of this model is then tested in complex turbulent flows including the separated flow over a

backward-facing step and the flow in a confined jet. The calculation results are encouraging

and point to the success of the present model in modeling turbulent flows with complex

geometries.

1. Introduction

The present study concentrates on complex turbulent shear flows which are of great

interest in propulsion systems. The particular flows presented in this paper are for the

backward-facing step and the confined jet, both of which have complex structures. For

example, a confined jet combines several types of flow structure and flow phenomena such

as a shear layer, jet, recirculation, separation and reattachment. Accurate prediction of

these flows is of great importance in all the key elements of engine design.

The turbulence model developed in this study is a Reynolds stress algebraic equation

model which is based on a turbulent constitutive relation (Shill and Lum]ey, 1993), a result of

rapid distortion theory (Reynolds, 1987) and the turbulent realizability principle (Schumann

1977, Lumley, 1978). The constitutive relation is obtained using the invariance theory in

continuum mechanics. For flows including a passive scalar, this theory leads to a general

constitutive relation for the Reynolds stress tensor uiuj in terms of the mean deformation

rate tensor Ui,j and the turbulent velocity and length scales characterized by the turbulent

kinetic energy k and its dissipation rate s. Pope (1975) applied a similar constitutive

relation to Rodi's algebraic Reynolds stress formulation (Rodi, 1972) in conjunction with

the LRR second order closure model (Launder et ai., 1975) and obtained an explicit algebraic



expressionfor the Reynolds stresses for a two-dimensional mean flow field. Taulbee (1992,

1994) was able to extend this method to a general three-dimensional flow. Oatski and

Speziale (1992) also applied this method in their algebraic Reynolds stress model. We note

that in Rodi's algebraic Reynolds stress formulation, some assumptions, such as the constant

anisotropy of Reynolds stresses and the neglect of turbulent transport of second moments,

are in general not valid for most turbulent shear flows. These assumptions may bring large

errors to turbulence modeling. In addition, the deficiency of existing second order closure

models would also add extra errors to this type of model. In this study, Rodi's formulation

is not considered. As an alternative, we directly impose the constraints based on rapid

distortion (rotation) theory and realizability on the constitutive relation for the Reynolds

stresses. As a result, a realizable algebraic expression for the Reynolds stresses in terms of

the mean velocity gradient and the characteristic scales of turbulence is obtained for general

three-dimensional turbulent flows. For turbulent scales, the standard k-e model transport

equations axe used in this study. Some model constants are calibrated using a well-studied

homogeneous shear flow and a surface flow in the inertial sublayer and then tested in other

complex flows. The model validation is made on the basis of applications to the rotational

homogeneous shear flows simulated by Bardina et aI. (1983), the two backward-facing step

flows experimentally studied by Driver and Seegmiller (1985) and Kim et al. (1978) and the

five cases of confined jets studied by Barchilon and Cutter (1964).

The calculations for complex flows axe performed with a conservative finite volume

method (Zhu, 1991b). Grid independent and low numerical diffusion solutions axe obtained

by using differencing schemes of second-order accuracy on sufficiently fine grids. For wall-

bounded flows, the standard wall function approach (Launder and Spalding, 1974) is used

for wall boundary conditions. The results axe compared in detail with the experimental

data for both mean and turbulent quantities. The calculations using the standaxd k-e eddy

viscosity model are also carried out for the purpose of comparison. The comparison shows

that the present realizable Reynolds stress algebraic equation model significantly improves

the predictive capability of k-e equation based models, expecially for flows involving massive

separations or strong shear layers. In these situations, the standard eddy viscosity model

overpredicts the eddy viscosity and, hence, fails to accurately predict shear stress, adverse

pressure gradient, separation, reattachment, recirculation, etc. We find that the success of

the present model in modeling complex flows is largely due to its effective eddy viscosity

formulation which accounts for the effect of the mean deformation rate. According to

the present model, the effective eddy viscosity will be significantly reduced by the mean

deformation rate and maintained at a correct level to mimic the complex flow structures.
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2. Turbulence model

2.1 Constitutive relation. Constitutive relations for the Reynolds stresses were

derived by several researchers (Pope, 1975, Yoshizawa, 1984 and Rubinstein and Barton,

1990). Shih and Lumley (1993) used the invariant theory in continuum mechanics and

the generalized Cayley-Hamilton formulations (Rivlin, 1955) to derive a more (perhaps the

most) general constitutive relation for the Reynolds stresses under the assumption that the

Reynolds stresses are dependent only on the mean velocity gradients and the characteristic

scales of turbulence characterized by the turbulent kinetic energy k and its dissipation rate

_. This relation is

2 k K2 2 K s
uiuj _ 5ij+ 2a2--(Uij + US,,- + 2a4--_-(U_j + U?. 2

K s 1 K s 1 II2 $ij)+ 2a67(u_,kv_,_ - _n2_j) + 2aT-_-(trk,_Vk,_--

+ 2as ---_-[Oi,kUj, kK4/rr rr2 + U_,tUj, t - -_II3$ij)2 + 2alo--_-(Ut,iu_jg4 + UkjU_, i - -_II3$ij)2

_a Ks/rr2 rr2 1 6 Ks 2 2 1ii46i1 )
+. _2-_-_,i,ko_,k -- _ll4 ij) + 2a13-_-(U_,iUkd - o

K s
+ 2_,-_-(u,,_u,,_u_,_+ uj,_u_,_u_,,-_n_,j)

a K6 2 2 2
+ 2 le-_-(U_,kUi,_Uid + U#,k _- 2 _

v rT rr U 2 U 2 2 (1)

where

rh = ui,u_,,i, II_ = Ui, Ui,_, II_ = ui,_,U_,k,

= (2)

Eq.(1) contains 11 undetermined coefficients which are, in general, scalar functions of various

invariants of the tensors in question, for example, SiiSij (strain rate) and ftiif/ii (rotation

rate) which are (IIz + II_ )/2 and (II2 - II_ )/2 respectively. The detailed forms of these scalar

functions must be determined by other model constraints such as rapid distortion theory,

realizability, and appropriate experimental data.

It is noticed that the standard k-e eddy viscosity model corresponds to the first two

terms on the right hand side of Eq.(1). Both the two-scale DIA approach (Yoshizawa, 1984)

and the RNG method (Rubinstein and Barton, 1990) also provided a similar relation which

is the first five terms on the right hand side of Eq.(1).
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In this study, for the purpose of engineering application we truncate F.xl.(1 ) to its

quadratic tensorial form. The necessity of using higher order non-linear terms will be left

for future study. To distinguish between the strain and rotation, we define

where

1

S_ = &i - §Skk&j,

(2.) = S?. 1S_=k6q
Si_ ,3- _ '

n't = n,t (3.1)

(2,) 2 1_2k6 q (3.2)
_q -- g_it -- 3

1 U 1
sit = 5( _,j + vt,_), nit = 5(u_,j - uj,d

S_j= SikSkj ni_= n_knkt

From the above definitions, we have the following relations:

(2,)s',=o, s_')=o, n,i =0

For later use, we further define

S* _ _ /o(2.)o(2.)= , fl*= , S(2*)=Voi.i °it

c(2-)¢O.)c(2.)
W* = S_tS;kS_i WO*) = "it m_ _k_

(s.), (s(2.)),

/ ./_(2,)c.(2,) (2,) (2,)u*= sbsb+ n.tn.t, uO.)= v_,jo,_+ n_tn,t

Using Eqs.(3.1-3.4), the truncated equation (1) can be written as

kS 0.) (2.)"iW = 2-k6't3 - C_ 2S 5 + Cl-d2(sit + n,t )

k s (.q(?,) (2,)
+ c_-j,_,, - nit - s'_n;t + n,%s;t)

ks (S!?,) 0-)
+ c_-,_,, - nit + s.knit - ntis;t)

(3.3)

(3.4)

(4)

2.2 Rapid distortion constraint. Reynolds (1987) and Mansour et at. (1991)

studied the effect of rapid rotation on turbulence using rapid distortion theory (RDT).

It was shown that there is no effect of the rapid mean rotation on the isotropic turbulence.

This result provides a constraint for Eq.(4). For rotating flows with S_ t - 0, Eq.(4) becomes

bit - uiut 1 _it
2k 3

= _a_*_(2c,- c_- c_)
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From the result of RDT for the isotropic turbulence, bij should remain zero under rapid

mean rotation and, therefore, we must require 2G1 = 6'2 + Cs. As a result, Eq.(4) becomes

_2k_,ju_uj = - C_,--[2S_j3

k3 (2.)

+ C2-_-i(2Si j - S*kfl[j + fl;kS_,j)

k _ (2.q(2,)
+ c3_,_,,_j + s;kn;j - n_',,sT,_) (5)

2.3 Realizability. Realizability (Schumann,1977, Lumley,1978), defined as the re-

quirement of the non-negativity of turbulent normal stresses and Schwarz' inequality be-

tween any fluctuating quantities, is a basic physical and mathematical principle that the

solution of any turbulence model equation should obey. It also represents the minimal

requirement to prevent a turbulence model from producing unphysical results. In the fol-

lowing, this principle will be applied to the relation of Eq.(5) to obtain constraints on its

coefficients C_,, C1 and C2. The same procedure together with the RDT constraint can be

also applied to the full equation (1).

Turbulence models often produce unphysical results under some extreme situations. For

example, under a rapid mean strain the turbulent energy component in the strain direction

will be rapidly reduced and a non-realizable model often drives that energy component to a

negative value and under a high mean shear the turbulent shear stress will rapidly increase

and a non-realizable model often overpredlcts this increase such that the Schwarz' inequality

will be violated. The commonly used k-e eddy viscosity model with a constant C_, = 0.09:

uluj = 2-k_J3- C_,-_-2STj (6)

is one such unrealizable model. In this model, the energy component u_ will become negative

when S_lk/e > 1/0.27 and the correlation coefficient between ux and u2 will exceed unity

when S_2k/e > 1/0.27 for a pure mean shear flow (which has only one non-zero component

sh).
To make eddy viscosity model Eq.(6) realizable, the coefficient C_ cannot be a constant.

It must vary with the mean flow deformation rate. To determine its appropriate formulation,

we may use the following realizability constraints:

w

u 2 > 0 (a = 1,2,3) (7.1)

_2

"""_ < 1 (_ = 1,2,3; _ = 1,2,3) (7.2)
_,__,_-
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Reynolds (1987) used the constraint of Eq.(7.1) to formulate the coefficient C_ which en-

sures positive normal stresses. Skih et al. (1993) also imposed Eq.(7.1) on their Reynolds

stress algebraic equation model. Here, we will foUow the method of Reynolds and use both

Eqs.(7.1) and (7.2) to determine the coefficients in Eq.(5).

In the principal axes of S_j (note, S* = 0), we may write:

[10 o}0 0 I-_
2

The invariant S* and W* defined in Eq.(3.4) can be calculated as

?-_a 2 3(1 - a2)s*= IS;_l , w • i
- (_)_/;

(2.)
In addition, noting that in the principal axes of S*j the off-diagonal terms of Sq

.q(2.)zero and that -ii = 0, we may write

o}.q.(?*) 0 _a+b 0 ¢(2.)

--t3 = 0 2 "'1 l0 a-b
2

The invariants S(2.) and W (2.) are

(8)

axe also

02 + 03 =

A

/_18 rr. k
A° + V 3-g-_ 7

B

A1 + ,/]I--_L UO*)( -_)2
V s+b ,

Cv. =

is_.)l_ + b2 wO-) _ _(1- b2)S(2")
= _ , (__+_)_/_ (9)

According to Eq.(5), the energy component u_ in the principal axes of S_j is

-- 2 _ .._ _ k a 2c(2.)

._,(2.)Now let us consider the contraction case in which S_a > 0, _'11 > 0 and ul2 will decrease

due to the contraction strain. Using Eqs.(8) and (9), we obtain

of=3 3 + a"---'_ + ((72 + if3) 2S (2.) 3 + b 2

Now, applying the constraint Eq.(7.1) and allowing the component u_ -, 0 but remains

positive as S* ---* oo and S (2.) --* oo. To satisfy this constraint, we may let



and
A-B=I

Following Reynolds (1987), let

318 A!2, ) = _ 18 (10)A_ = + a 2' 3 + b_

Using Eqs.(8) and (9), A: and A (_*) can be determined by the following equations:

s

(A_*) a - _A, - 9W* =0

9 A(_.) _ 9W(2,) = 0a _

(11.1)

(11.2)

It can be shown that the positive root of the above equations can be obtained when the

values of W ° and W (2.) are between -l/x/'6 and 1/x/_ which correspond to axisymmetric

expansion and axisymmetric contraction respectively. The appropriate roots are

1

¢ = _arccos (vgW*) (11.3)

1
¢ = -zarccos(vf6W (2")) (11.4)

,)

Eqs.(ll.3) and (11.4) show that the values of A: and A(_z*) are between v/6/2 and v/6. The

model coefficients can be now written as

A
C_ (12)

Ao+ A:U.
B

C2 + C3 = (_*) (2.)(k)2 (13)
A1 +A. U -7-

The further determination of A, B, A0 and A1 should be carried out by using the constraint

of Eq.(7.2) and the experimental data from well-studied turbulent flows such as homogeneous

shear flows and channel flows.

Here, we try to propose a simple as possible but workable model (which contains the

property of a_isotropy) for engineering application and leave the more complete model form

of Eqs.(5), (12) and (13) for future study. To do that, we choose A = 1, then B must be

equal to zero and 6'3 = -C2. As a result, Eq.(5) becomes

(14)



It is obvious that this model satisfies the constraint Rq.(7.1). To apply the constraint

Eq.(7.2), we use a pure shear flow with only one non-zero component U_,2 (i.e., S[2 = ft_2 >

0) which can be considered as the most extreme case for satisfying Schwarz' inequality. For

this flow, the relevant Reynolds stresses are

ulu2 = -C._2S;2

m 2 k 3

3

(15)

Now using the constraint of Eq.(7.2), we may find a formulation for (72:

C0 +6 s'k n'k
(16.1)

where
1

C_, = Ao + A:-_ (16.2)

The model represented by Eqs.(14), (16.1) and (16.2) is quite simple but has several ad-

vantages compared to the standard k-e eddy viscosity model of Eq.(6). First, the present

model is fully realizable. It will not produce negative energy components and will not violate

the Schwarz' inequality between turbulent velocities. Second, the effective eddy viscosity,

defined as uau_/2S*__, is anisotropic as it should be. Finally, the present model contains

the effect of mean rotation on Reynolds stresses with a proper behavior that matches the

RDT result: the mean rotation will not affect the isotropic turbulence.

There are stilltwo model constants, A0 and C0, that need to be determined. We may

use Eqs.(15) for the homogeneous shear flow or the surface flow in the inertialsublayer.

According to these flows,A0 and Co are chosen as

A0 = 6.5, Co = 1.0 (17)

With the values of A0 and Co in Eq.(17), the model of Eq.(14) gives bl_ = -0.156, b_ =

-b22 = 0.123 for Tavoularis and Corrsin's (1981) homogeneous shear flow at U_,2k/e = 6.08

and gives b12 = -0.122, bll = -b22 = 0.14 for the direct numerical simulation of channel flow

(Kim, 1990) in the inertial sublayer at U1,2k/e = 3.3. These results show that the present

model gives reasonable anisotropy of Reynolds stresses for both the homogeneous shear flow

and the boundary layer flow compared to the standard k-e eddy viscosity model which gives

bll = b22 = 0 for both the flows and gives b12 = -0.273 for the homogeneous shear flow and



ba2 = -0.149 for the boundary layer flow. Detailed comparisons with the experimental and

DNS data are shown in Table 1 for the homogeneous shear flow of Tavoularis and Corrsin

(1981) and in Table 2 and Figure 1 for the channel flow of Elm (1990).

Table 1 Anisotropy in the homogeneous shear flow

experiment standard present

b12 -0.142 -0.273 -0.156

bll 0.202 0. 0.123

b22 -0.145 0. -0.123

Table 2. Anisotropy in the channel flow

DNS data standard present

bl_ -0.145 -0.149 -0.122

bll 0.175 0. 0.14

b2_ -0.145 0. -0.14

2.4 Model equations. Here we summarize the equations and the models which

will be used for applications in the next section. For incompressible flows, the mean flows

are governed by the following equations

u_,_= o (18)

v_,_+ (v_v_ - _,v_,s+ _--_),j = p'_
P

where the Reynolds stresses will be modeled by Eq.(14):

(19)

_ ks . •

and Cg, C2 are determined by Eq.(16):

where

1
c_ = ,.,, _ =

Ao + A_

V/1 - 9c_(_)_
Co + 6s'l, n'k

Ao = 6.5, Co = 1.0

Two quantities in Eq.(14), the turbulent kinetic energy k and its dissipation rate _, remain

to be determined. At the present time, we use the standard k-e model equations which are

k., + v_k._= [(,.,+ --)k.j]._ - ,,,,,._v_.;-
o"k

_,,+ u_,j = [(,, + --)_,_],_ -c,_-_,aqu,,j -c,_ TO"e

(20)

(21)
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where
k 2

vt : C_-- (22)

The coefficients C_1, C_2, _k and _ assume their standard values:

C_I--1.44, Cc2=1.92, orb=l, _e=1-3 (23)

3. Applications

3.1 Rotating homogeneous shear flow. The present model is able to mimic the

effect of the mean rotation rate on the turbulence. A test case is the rotating homogeneous

shear flow which was studied by Bardina eta/. (1983) using the large eddy simulation

(LES) method. The effect of solid body rotation or the rotation of the reference frame on

the turbulence must be appropriately incorporated in Eq.(14) through the terms containing

ft_j. In addition, the coefficients C_ and C2 should be also modified by the rotation rate of

the reference frame, wi (angular velocity). Particularly, the U* in Eq.(16.2) is modified by

u" = ,/s:.s:. + h'jh j
V '3 '3

where

(24.1)

_j = f_*j - 2eijk_ak (24.2)

ftTj = Gij - _ijk_k

where flij is the mean rotation rate viewed in the rotating reference frame. Figure 2 is

the configuration of the flow being tested where f_ = ms and _12 = S_2 = ½0U/o_Y =

S/2. Figures 3(a)-3(c) show the evolution of the turbulent kinetic energy k/ko with the

nondimensional time, St, at the rotation rates of f_/S : 0, 0.5 and -0.5, respectively,

where k0 is the initial turbulent kinetic energy, S is the mean strain rate and ft is the

angular velocity of the reference frame. The calculations were performed with a fourth

order Runge-Kutta scheme. The initial condition corresponding to the isotropic turbulence

used in LES with _o/Sko = 0.296 was adopted for all the three cases. The results from both

the present model and the standard k-6 model (hereafter referred to as SKE) are compared

with LES results in figures 3(a)-3(c). These figures show the ability of the present model

to simulate the effect of the large rotation rate on turbulence. Note that the SKE model

gives the same results as for the no rotation case because it cannot account for the effect of

rotation on the evolution of turbulence.
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3.2 Backward-facing step flows.

Numerical procedure. For computational convenience, the non-dimensional form

of the governing equations is solved, in which

zi Ui p

<::i>=L_.----}, <U/>=U,.'--- 7, <P>=pU_. t,

k eL,.ef v_
<k>=_ <e>--- < vt >--

trY¾I' u_,f ' V,,1L_I

(25)

where < > refers to a non-dimensional quantity, and L,.ey, and U_ey are the reference length

and velocity, respectively. Accordingly, the flow Reynolds number is defined by

Re = L,_fU.,I (26)
v

Hereafter, all the quantities will be of the non-dimensional form so that < > will be dropped

for simplicity.

In the steady-state and two dimensional cases (zl = z, z2 = y), the transport equations

(19), (20) and (21) can be written in the following general form

1 v_ 1 v_

[u_- (_ + _)_,=],z + [v_- (_ + _)_,_1,_ = s+ (27)

where qt stands for the dependent variables: U, V, k and ¢. S# is the source term for each

corresponding equation.

The numerical method used to solve the system of equations (27) is a finite-volume

procedure. It uses a non-staggered grid with all the dependent variables being stored at the

geometric center of each control volume (Figure 4). The momentum interpolation procedure

of Rhie and Chow (1983) is used to avoid spurious oscillations usually associated with

the non-staggered grid, and the pressure-velocity coupling is handled with the SIMPLEC

algorithm (Van Doormal and Raithby, 1984). To ensure both accuracy and stability of

the numerical solution, the convection terms are approximated by a second-order accurate

and bounded differencing scheme (Zhu, 1991a), and all the other terms by the conventional

central differencing scheme. As a result, the discretized counterpart of equation (27) can be

cast into the following linearized form

+o *, = E *,+,+so (2s)
1 l

where the coefficients At (l = IV, E, S, N), which relate the principal unknown _bc to its

neighbours _bt (Figure 4), result from the discretization of the left-hand side terms of equation

(27). The convection scheme used ensures that At > 0 so that the resulting coefficient matrix
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is always diagonally dominant. The strongly implicit procedure of Stone (19(}8) is used to

solve the system of algebraic equations. The iterative solution process is considered to be

converged when the maximum normalized residue of all the dependent variables is less than

10 -4. The details of the present numerical procedure are given in Rodi et as. (1989) and

Zhu (1991b).

Numerical results. Application is made to the two backward-facing step flows ex-

perimentally studied by Kim, Kline and Johnston (1978) and Driver and Seegmiller (1985),

from here on referred to as KKJ- and DS-cases, respectively. Figure 5 shows the flow con-

figuration and the Cartesian coordinate system. Table 3 gives the flow parameters for both

cases; here the experimental reference free-stream velocity Urel and step height Ha are taken

as the reference quantities for non-dimensionalization.

Case Re

DS 37423

KKJ 44737

Table 3. Flow parameters

Lm Le H_

1.5 10 40 1

0.6 10 40 1

Ha U,.e/

8 1

2 1

Three types of boundaries are present, i.e. inlet, outlet and solid wall. At the inlet,

the experimental data are available for the streamwise mean velocity U and the turbulent

normal stresses _ and _-_. k is calculated from these _-_ and _-_ with the assumption that

1
(29)

and e by

C_/'ks/2 L ----min(0.41Ay, 0.085/_) (30)
e-- L '

where Ay is the distance from the wall and 6 is the boundary-layer thickness given in Table

3. At the outlet, the streamwise derivatives of the flow variables are set to zero. Influences

of both inlet and outlet conditions on the solution are examined by changing the locations

Lo and L_, and it has been found that in both cases, the distances given in Table 3 are

already sufficiently far away from the region of interest. In the earlier stage of this work,

we tested several low Reynolds number k-e models including those of Chien (1982), Lain

and Brexnhorst (1981), Launder and Sharma (1974), Shih and Lumley (1992), and Yang

and Shlh (1992), but none of them was found to be able to yield satisfactory solutions for

the skin friction along the bottom wall. Similar findings were also reported in Avva et aS.

(1990), Shuen (1992) and So and Lai (1988). Therefore in this work, we use the standard

wall function approach (Launder and Spalding, 1974) to bridge the viscous sublayer near

the wall.

Two sets of non-uniform computational grids are used to examine the grid dependence

of the solution; they contain 110 ×52 (coarse) and 199 ×91 (fine) points for the KKJ-case and

12



106x56 (coarse)and 201x109 (fine) points for the DS-case.Figures 6(a) and 6(b) show the

friction coefficient Cf at the bottom wall calculated with the SKE model and the present

model; also included in figure 6(a) are the experimental data for the DS-case, but no such

data are available for the KKJ-case. It can be seen that the grid refinement does produce

some differences for the results of the present model, more noticeable in the KKJ-case, and

this is also the case for the SKE results. This indicates that the solutions obtained on the

coarse grids are not sufficiently close to the grid-independent stage. Recently, Thangam

and Hur (1991) have conducted a highly-resolved calculation for the KKJ-case. They have

found that quadrupling a 166x 73 grid leads to only a minimal improvement. Therefore,

the present results on the fine grids can be considered as grid-independent. For the DS-

case, the fine grid computations with the SKE model and present model required 703 and

691 iterations, and took approximately 7.1 and 9 minutes of CPU time on the Cray YMP

computer. In the following, only the fine grid results are presented.

The wall friction coefficient Cf is a parameter that is very sensitive to the near-wall

turbulence modeling. It is Cy that the various low Reynolds number k-e models tested

predict much worse than those using wall functions. However, the influence of the near-wall

turbulence modeling is mainly restricted to the near-wall regions. It is seen from figure 6(a)

that both the SKE model and the present model largely underpredict the negative peak of

CI, pointing to limited accuracy of the wall function approach in the recirculation region.

The computed and measured reattachrnent points are compared in Table 4. They are

determined in the calculation from the point where Cf goes to zero. The reattachment

point is a critical parameter which has often been used to assess the overall performance

of turbulence models as well as numerical procedures. Table 4 clearly demonstrates the

significant improvement obtained with the present model. It is important to mention that

this improvement is mainly due to the behavior of C_, in the present model, and that the

anisotropic behavior of the turbulent stresses only makes a marginal contribution to it.

Table 4. Comparison of the reattachment points

Case

DS

KKJ

measurement SKE PRESENT

6.1 4.99 5.80

7-4- 0.5 6.35 7.27

Figures 7(a) and 7(b) show the comparison of computed and measured static pressure

coefficients Cp along the bottom wall. In both cases, the SKE model is seen to predict

premature pressure rises which is consistent with its underprediction of the reattachment

lengths.

The streamwise mean velocity U profiles are shown in figures 8(a) and 8(b) at four

different cross-sections. Here, the differences between the results of the SKE model and

present model are not substantial, as compared to other flow variables. However, the present

model shows somewhat slower recovery in the vicinity of the reattachment point. We notice
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that such a slow recovery also exists in the Reynolds stress model prediction by Obi et aL

(1989). Further downstream, say at z=20 in figure 8(a), the results of the two models nearly

coincide with each other.

Finally, the comparisons of predicted and measured turbulent stresses _2, v2 and _-_

are shown in figures 9 and 10 at various z-locations. In the KKJ-case, no experimental data

for the turbulent stresses are available in the recirculation region, and the reattachment

point was found in the experiment to move forward and backward continuously around

seven step heights downstream of the step, leaving an uncertainty of 3:0.5 step height for

the reattachment length. This also points to some uncertainty in the measured turbulent

quantities in the recovery region. On the other hand, the experimental data in the DS-case

should be considered more reliable because of the smaller uncertainty of the reattachment

location, indicating a smaller unsteadiness of the flow. The SKE model gives unrealistic

results about normal Reynolds stresses: v _ > u 2 at all the locations. In contrast, the

present model gives at least qualitatively correct results due to the non-linear terms in

Eq.(14) which increase u 2 while decreasing r 2, leading to an overall improvement in both

u 2 and v 2 results.

3.3 Confined Jets. The general features of confined jets measured by Barchilon and

Curtet (1964) are sketched in figure 11. At the entrance, two uniform flows, a jet of larger

velocity and an ambient stream of smaller velocity, are discharged into a cylindrical duct of

diameter Do. The inlet flow conditions can be characterized by the Craya-Curtet number

C_. The experiment shows that recirculation occurs when Cz <0.96. For a given geometry,

recirculation as well as adverse pressure gradients can be intensified by reducing the value of

C4 at the entrance. Five cases of C'z were studied, ranging from no to strong recirculation.

The predicted axial mean velocity profiles at two Cz numbers are shown and compared

with the experimental data in figure 12, where R and Um are the radius of the cylinder and

the sectional mean velocity, respectively. Both models are seen to predict very well the up-

stream evolution of the flow. As for the downstream development, the results of the present

model remain in good agreement with experiments while the SKE model underpredicts the

centerline velocity decay at all C¢ numbers.

The variation of the pressure coefficient Gp along the duct wall is shown in figure 13.

The pressure distribution is governed by the jet entrainment as well as the contraction and

expansion of the flow caused by the recirculation bubble. The decrease in the ambient

velocity induced by the entrainment gives rise to an adverse pressure gradient, while the

contraction of streamlines produces the opposite effect. These two mechanisms interact

more intensely with each other as C'z decreases and cause the pressure to vary little in the

region upstream of the center of the recirculation bubble. However, in the downstream part

of the recirculation bubble, the deceleration of the flow sets up an adverse pressure gradient,

the slope of which becomes steeper as C¢ decreases. Therefore, the ability to capture the
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location of the recirculation center will have a direct impact on the prediction of the pressure.

Regarding the comparison between predictions and experiments, it is seen that although

both models predict the same total pressure rises which are in excellent agreement with the

measurements, the present model captures the pressure distribution much better than does

the SKE model for all the C¢ values.

4. Conclusion

A new Reynolds stress algebraic equation model has been developed using a truncated

constitutive relation. The development of the model is based on the constraints from rapid

distortion (rotation) theory and realizability. Therefore, the present model shows the proper

lack of a rotation effect on the isotropic turbulence and is fully realizable, i.e., it will not pro-

duce unphysical Reynolds stresses for the mean flow field. The model is calibrated by using

basic flows (homogeneous shear and channel flows), and then is applied to complex flows.

The calculations have been compared with available experimental data. The comparisons

show that the present model does provide significant improvement over the standard k-¢

eddy viscosity model and that the present model is as robust and economical as well. This

indicates that the present model has good potential to be a practical tool in engineering

applications.
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